scientific journal
  • ISSN 2072-8158
  • -
  • Урал-Пресс: 012688

Numerical simulation of nonstationary filtration in solving problems of water use and ecology

Published in «Water: chemistry and ecology» № 4-6 / 2018 , p. 131-136.
Heading:

 

Sauc A.V.
Eregina S.V.

Summary:
The article considers the application of numerical simulation of non-stationary filtration pro-cesses in porous media for solving problems of water use and environmental protection on the example of emergency overflow of the sewer well. Software implementation of the model is performed in the environment «Comsol Multiphysics» using the finite element method. The model is based on the nonstationary Darcy and diffusion equations in porous media and the corresponding initial and boundary conditions, taking into account the self-compaction of the medium under the action of water pressure. The results of the study have practical application in determining the filtration rate, pressure, depth and time of penetration of water and concen-trations of harmful impurities contained therein into the thickness of the enclosing structures and waterproofing materials, which makes it possible to assess their protective properties.

Keywords: ammonia, filtration, insulation, low-pressure polyethylene

Bibliographic link:
Sauc A.V., Eregina S.V. Numerical simulation of nonstationary filtration in solving problems of water use and ecology // Water: chemistry and ecology. — 2018. — № 4-6. — c. 131-136. — http://watchemec.ru/en/article/28956/

Literature:
1. Zarubina L.P. Gidroizolyaciya konstrukcij zdanij i sooruzhenij. SPb: «BVH-Peterburg», 2011. 272 s.
2. Rozental N.K. Korroziya i zaschita betonnyh i zhelezobetonnyh konstrukcij so-oruzhenij ochistki stochnyh vod / Beton i zhelezobeton. 2011, # 2. S. 78-85.
3. Anguiano M. Darcy's laws for non-stationary viscous fluid flow in a thin porous medium / Mathematical Methods in the Applied Sciences. 2016. Vol. 40, Issue 8. PP. 2878-2895.
4. Freeze R.A. Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin. Water Resour. 1971. vol. 7, no. 2. pp. 347-366.
5. Bear J. Dynamics of Fluids in Porous Media. New York: Elsevier Scientific Publishing Co, 1972. 764 p.
6. Bear J. Hydraulics of Groundwater. New York: McGraw-Hill, 1979. 592 p.
7. Bruk V.V. Matematicheskie modeli v ekologii / V.V. Bruk, I.N. Bereshko. Ch. 2. Harkov: Nac. aerokosm. un-t «Hark. aviac. in-t», 2006. 68 s.
8. Breitkopf C. Diffusion in porous media-measurement and modeling. Berlin: Fritz-Haber-Institute Berlin, 2011. 106 p.
9. Koshkin N.N. Spravochnik po elementarnoj fizike / N.N. Koshkin, M.G. Shirke-vich. M.: Nauka. 1976. 256 s.
10. SP 43.13330.2012 «Sooruzheniya promyshlennyh predpriyatij. Aktualizirovannaya redakciya SNiP 2.09.03-85»: Minregion RF 29.12.2011. M.: Minregion RF, 2012. 106 s.
11. Korinko I.V. Normirovanie koncentracii azotsoderzhaschih soedinenij pri prieme stochnyh vod v gorodskuyu kanalizaciyu / I.V. Korinko, V.A. Yurchenko // Ko-munalne gospodarstvo mist. 2010, # 93. S. 58-62.
12. Kosichenko Yu.M. Protivofiltracionnye pokrytiya iz geosenteticheskih materi-alov / Yu.M. Kosichenko, O.A. Baev. Novocherkassk: RosNIIPM, 2014. 293 s.
13. Dvorkin L.I. Osnovy betonovedeniya / L.I. Dvorkin, O.L. Dvorkin. SPb: OOO «Stroj-Beton», 2006. 692 s.
14. Dvorkin L.I. Raschetnoe prognozirovanie svojstv i proektirovanie sostavov be-tonov / L.I. Dvorkin, O.L. Dvorkin. M.: Infra-Inzheneriya, 2016. 386 s.