scientific journal
  • ISSN 2072-8158
  • -
  • Урал-Пресс: 012688

The chromatic adaptation of c- phycoerythrin -containing cyanobacteria Synechococcus sp. (Black Sea)

Published in «Water: chemistry and ecology» № 4-6 / 2018 , p. 106-115.


Efimova T.V.
Churilova T.Ya.
Muhanov V.S.
Sahon E.G.

Effect of light of different spectral composition on the structural and functional characteristics of cyanobacteria, which are an important component of the aquatic environment and determine water quality, has been investigated. The experiments with the strain of cyanobacteria Synechococcus sp. BS9001 have shown no changes in the ratio between chlorophyll a and accessory pigments typical for complementary chromatic adaptation. The growth rate increased when the cells were growing under the color light (green light) spectral features of which were complementary to the C-phycoerythrin absorbance band, and decreased when cells were adapted to the color light with spectral features not coincided with the C-phycoerythrin absorbance band. The investigations curried out in the Black Sea have shown that during the seasons when water column was stratified the abundance of picocyanobacteria increased with depth being maximal in the phytoplankton community existing in the water layer under the seasonal thermocline. For this deep phytoplankton community it was obtained that pigment absorption spectra had local maximum at ~ 550 nm, which was likely to be related to C-phycoerythrin containing picocyanobacteria Synechococcus sp. Coincidence of C-phycoerythrin absorbance with the spectral features of radiance penetrating to the euphotic zone bottom could cause high abundance of C-phycoerythrin containing picoplankton Synechococcus sp. below the thermocline.

Keywords: Synechococcus sp. BS9001– рicocyanobacteria - spectral features of radiation – pigments

Bibliographic link:
Efimova T.V., Churilova T.Ya. , Muhanov V.S., Sahon E.G. The chromatic adaptation of c- phycoerythrin -containing cyanobacteria Synechococcus sp. (Black Sea) // Water: chemistry and ecology. — 2018. — № 4-6. — c. 106-115. —

1. Kirk J.T.O. Light and photosynthesis in aquatic ecosystems. Third edition. Cambridge: Cambridge University Press, 2011. 649 p.
2. Falkowski P.G. Light-shade adaptation in marine phytoplankton // Primary productivity in the Sea / Eds. Falkowski P. G. New-York, London: Plenum Press. 1980. P. 99-119.
3. Holdsworth E.S. Effect of growth factor and light quality on thegrowth, pigmentation and photosynthesis of two diatoms, Thalassiosira gravida and Phaeodactylum tricornutum // Mar. Biol. 1985. V. 86. P. 253-262.
4. Wynne D. Effects of light intensity and quality on therelative N and P requirements (the optimum N : P ratio) of marine algae / D. Wynne, G.Y. Rhee // J. Plankton Res. 1986. V. 8. P. 91-103.
5. Wallen D.G. Light quality and concentration of proteins RNA, DNA, and photosynthetic pigments in two species of marine plankton algae / D.G. Wallen, G.H. Geen // Mar. Biol. 1971. V.10. R. 44-51.
6. Ojala A. The influence of light quality on growth and phycobiliprotein/chlorophyll a fluorescence quotients of some species of freshwater algae in culture // Phycologia. 1993. V. 32. N. 1. P. 22-28.
7. Jones T.W. Effect of light quality and intensity on glycerol content in Dunaliella tertiolecta (Chlorophyceae) and the relationship to cell growth/osmoregulation/ T.W. Jones, R.A. Galloway // J. Phycol. 1979. V. 15. P. 101-106.
8. Nelson N.B. Chromatic light effects and physiological modeling of absorption properties of Heterocapsa pygmaea (= Glenodinium sp.) / N.B. Nelson, B.B. Prezelin // Mar. Ecol. Prog. Ser. 1990. V. 63. R. 37-46.
9. Faust M.A. Response of Prorocentrum Mariae – Lebouriae (Dinophyceae) to light of different spectral qualities and irradiances: growth and pigmentation / M.A. Faust, J.C. Sager, B.W. Meeson // J. Phycol. 1982. V. 18. R. 349-356.
10. Vesk M. Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes / M. Vesk, S. W. Jeffrey // J. Phycol. 1977. V.13. N. 3. P. 280-288.
11. Schofield O.R. Spectral photosynthesis, quantum yield and blue-green light enhancement of productivityrates in the diatom Chaetoceros gracile and the prymnesiophyte Emiliania huxleyi / O.R. Schofield, R. Bidigare, B. Prezelin // Mar. Ecol. Prog. Ser. 1990. V. 64. R. 175-186.
12. Rumyancev V.A. «Cvetenie» vody – ugroza ekologicheskoj bezopasnosti / V.A. Rumyancev, L.N. Kryukov // Izvestiya russkogo geograficheskogo obschestva. 2013. T. 145. # 2. S. 1-9.
13. Andersen R.A. Algal culturing techniques. Elsevier Academic Press, 2005. 578 p.
14. Ajzenberg Yu.B. Spravochnaya kniga po svetotehnike. Moskva: Energoatomizdat, 1983. 472 s.
15. Mitchell B.G. Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton / B.G. Mitchell, D.A. Kiefer // Deep- Sea Res. 1988. V. 35. N. 5. P. 639-663.
16. Tassan S. An alternative approach to absorption measurements of aquatic particles retained on filters / S. Tassan, G. Ferrari // Limnol. Oceanogr. 1995. V. 40. N. 8. P. 1358-1368.
17. Mitchell B.G. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT) // Ocean Optics X. SPIE 1302. 1990. P. 137-148.
18. Churilova T.Ya. Spectral model of underwater irradiance in the Black Sea / T.Ya. Churilova, V.V. Suslin, H.M. Sosik // Physical Oceanography. 2009. V. 19. N. 6. P. 366-378.
19. Morel A. Prochlorococcus and Synechococcus: a comparative stady of their optical properties in relation to their size and pigmentation / A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre // Journal of Marine Research. 1993. V. 51. P. 617-649.
20. Tandeau de Marsac N. Occurrence and nature of chromatic adaptation in cyanobacteria // J. Bacteriol. 1977. V. 130. N. 1. P. 82-91.
21. Hauschild C.A. Effects of spectral quality on growth and pigmentation of ricocyanobacteria / C.A. Hauschild, H.G. McMurter, F.R. Pick // J. Phycol. 1991. V. 27. R. 698-702.
22. Waterbury J.B. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus / J.B. Waterbury, F.W. Watson, F.W. Valois, D.G. Franks // Photosynthetic picoplankton / Eds. Platt T., Li W.K.W. Canadian Department of Fisheries and Oceans, Ottawa, 1986. P. 71-120.
23. Palenik B. Chromatic adaptation in marine Synechococcus strains // Applied and environmental microbiolog. 2001. V. 67. N. 2. P. 991-994.
24. Everroad C. Biochemical bases of type IV chromatic adaptation in marine Synechococcus sp. / C. Everroad, C. Six, F. Partensky, J.C. Thomas, J. Holtzendorff, A.M. Wood // J. Bacteriol. 2006. V. 188. P. 3345-3356.
25. Churilova T. Spectral features of downwelling radiance and chromatic adaptation of phytoplankton in the Black Sea / T. Churilova, V. Suslin, O. Rylkova, A. Dzhulay // Proc. of VI Int. Conference «Current Problems in Optics of Natural Waters» (ONW’2011), St. Petersburg: Publishing House «Nauka» of RAS, 2011. P. 117-121.
26. Stomp M. Adaptive divergence in pigment composition promotes phytoplankton biodiversity / M. Stomp, J. Huisman, F. de Jong, A. J. Veraart, D. Gerla, M. Rijkeboer, B.W. Ibelings, U.I.A.Wollenzien, L.J. Stal // Nature. 2004. V. 432. P. 104-107.
27. Churilova T.Ya. Bioopticheskie pokazateli vod glubokovodnoj chasti Chernogo morya: parametrizaciya pogloscheniya sveta fitoplanktonom v osennij i letnij periody / T.Ya. Churilova, A.A. Dzhulaj, V.V. Suslin, O.V. Krivenko, T.V. Efimova, V.S. Muhanov, O.A. Rylkova, L.A. Manzhos // Sbornik nauchnyh trudov Ekologicheskaya bezopasnost pribrezhnoj i shelfovoj zon i kompleksnoe ispolzovanie resursov shelfa. 2014. V. 28. S. 320-333.
28. Uysal Z. Pigments, size and distribution of Synechococcus spp. in the Black Sea. // Journal of Marine Systems. 2000. V. 24 (3-4). P. 313-326.
29. Shalapenok L.S. Protranstvennoe raspredelenie i geterogennost sostava populyacij pikoplanktonnyh cianobakterij Synechococcus sp. v Chernom more / L.S. Shalapenok, A.A. Shalapenok // Okeanologiya. 1997. T. 37. # 4. S. 547-552.