scientific journal
  • ISSN 2072-8158
  • -
  • Урал-Пресс: 012688

Climatic Cryolite Effect

Published in «Water: chemistry and ecology» № 4-6 / 2018 , p. 63-74.
Heading:

 

Dzyuba A.V.

Summary:
Topical issues of the reaction of water objects of the permafrost zone to modern climate changes are considered. The change in the albedo of the underlying surface is analyzed with a change in the degree of solidity of permafrost in the Arctic zone. A physical mechanism for the formation of the climatic Cryolite Effect is described as the total effect of the reverse climatic relationships due to the modern dynamics of the Cryolithosphere. A physically and empirically justified explanation of the formation of the planetary maximum of the concentration of carbon dioxide and methane in the Arctic zone was proposed, while the anthropogenic emissions of these gases are maximal in the temperate and subtropical latitudes of the Northern Hemisphere. The assumption that thawing of permafrost rocks is at present largely an endogenous process is substantiated. The observed degradation of the Cryolithosphere is due not only to an increase in the temperature of surface air, but also to the energetic effect of biochemical reactions directed towards a decrease in the enthalpy and an increase in the entropy of the system of immobile water objects and thawing soil. The obtained results confirm the remarkable ability of nature to damp the modern largely anthropogenic climatic and environmental impacts that are most sharply manifested in the Arctic.

Keywords: climate change, permafrost, stationary water bodies

Bibliographic link:
Dzyuba A.V. Climatic Cryolite Effect // Water: chemistry and ecology. — 2018. — № 4-6. — c. 63-74. — http://watchemec.ru/en/article/28931/

Literature:
1. IPCC, 2007: Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Eds. Solomon, S., D. Qin, M. Manning, Z. et al. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 336 p.
2. Jones P. D Hemisphere and large-scale surface air temperature variations: An extensive revision and an update to 2001 / P.D. Jones, A. Moberg // J. Climate. 2003. #. 16. P. 206-223.
3. Climatic Research Unit, University of East Anglia, Norwich. Elektronnyj resurs: www.cru.uea.ac.uk/data.
4. Inter governmental Panel on Climate Change. Elektronnyj resurs: www.ipcc-data.org.
5. Dzyuba A.V. Formalizaciya dalnej korrelyacionnoj svyazi severoatlanticheskogo kolebaniya i temperaturnogo rezhima atlantiko-evrazijskoj pripolyarnoj zony. // Meteorologiya i gidrologiya. 2009. # 5. C. 16-33.
6. FGBU IGKE Rosgidrometa i RAN, Moskva. Elektronnyj resurs: http://climatechange.igce.ru.
7. Dzyuba A.V. Izmeneniya submarinnogo podzemnogo stoka i vozmozhnyj mehanizm razrusheniya morskih arkticheskih gidratov metana. /A.V. Dzyuba, I.S. Zekcer //Vodnye resursy. 2013. t. 40. # 1. S. 83-94
8. Dzyuba A.V. Neopredelennosti ocenki vliyaniya sovremennyh variacij klimata na podzemnye vody /A.V. Dzyuba, I.S. Zekcer // Doklady Akademii Nauk. 2016, tom 466, # 1, s. 88-91.
9. Dzyuba A.V. Degradaciya kriolitozony i risk globalnoj virusnoj invazii /A.V. Dzyuba, L.I. Elpiner // Voda: himiya i ekologiya. 2017. # 1. S. 48-59.
10. Semiletov I.P. Parnikovyj effekt, cikl ugleroda v Arktike, Rossijskaya transarkticheskaya ekspediciya - 2000 // Vestn. RFFI. 2001. # 2 (24). S.59-63.
11. Semiletov, I.P. Aquatic sources and sinks of CO2 and CH4 in the polar regions. // J. of the Atmospheric Sciences. 1999. # 56. P. 286-306.
12. Kondratev K.Ya. Modelirovanie globalnogo krugovorota ugleroda. / K.Ya. Kondratev, V.F. Krapivin M.: Fizmatlit, 2004. 336 s.
13. Mohov I. I. Modelnaya diagnostika emissij metana bolotnymi ekosistemami vo vtoroj polovine veka s ispolzovaniem dannyh reanaliza / I.I. Mohov, A.V. Eliseev, S.N. Denisov // Dokl. RAN. 2007. T. 417. # 2. S. 258-262.
14. Semenov S.M., Globalnye i regionalnye klimaticheskie posledstviya nekotoryh programm stabilizacii koncentracij dioksida ugleroda i metana / S.M. Semenov, Yu.A. Izrael, G.V. Gruza, E.Ya. Rankova // Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem. 2007. T. 21. C. 75-91.
15. Dlugokencky E.G. Continuing decline in the growth rate of the atmospheric methane burden. / E.G. Dlugokencky, K.A. Masarie, P.M. Lang// Nature. 1998. # 393. P. 447-450.
16. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model / Q. Zhuang, J.M. Melillo, D.W. Kicklighter // Glob. Biogeochem. Cycles. 2004. V. 18. # 3. P. GB3010.
17. WMO.WDCGG data summary 2005. GAV Data. V. 4. Greenhouse gases and other atmospheric gases. CD-ROM, # 11. Elektronnyj resurs: https://ds.data.jma.go.jp/gmd/wdcgg/.
18. WMO. WDCGG data summary 2005. GAV Data. V. 4. # 29. Greenhouse gases and other atmospheric gases. 755 p.
19. Budyko M. I . Teplovoj balans zemnoj poverhnosti. L. Gidrometeoizdat, 1956. 254 s.
20. Kurtener D. A. Raschet iregulirovanie teplovogo rezhima votkrytom i zaschischennom grunte. / D.A. Kurtener, A.F. Chudnovskij. L., Gidrometeoizdat, 1969. C. 184-226.
21. Pavlov A. V. Teplofizika landshaftov. Novosibirsk, Nauka, 1979. 285 s
22. Ivanov B.V. Novye dannye ob albedo estestvennyh i iskusstvennyh snezhno-lednikovyh pokrovov v rajone antakticheskoj stancii Novolazarevskaya / B.V. Ivanov, O.M. Andreev, A.M. Bezgreshnov, S.P. Polyakov // Problemy Arktiki i Antarktiki. 2009. # 3 (83). S. 28-36.
23. Kirpotin S.N., Dinamika ploschadej termokarstovyh ozer v sploshnoj i preryvistoj kriolitozonah Zapadnoj Sibiri v usloviyah globalnogo potepleniya. / S.N. Kirpotin, Yu.M. Polischuk, N.A. Bryksina // Vestnik Tomskogo gosuniversiteta, 2008. # 311. S. 185-189.
24. Smith I.C. Disappearing Arctic lakes / I.C. Smith, Y. Sheng, G.M. MacDonald, Hinzman L.D. // Science, 2005, vol. 308, No. 5727.P. 1429.