всероссийский научно-практический журнал
  • ISSN 2072-8158
  • -
  • Роспечать: 48626
  • Пресса России: 44722

Сопряженность преобразований Fe и Mn с циклом азота в морских и пресноводных отложениях

Опубликовано в журнале «Вода: химия и экология» № 4 за 2015 год, стр. 30-36.
Рубрика: Научно-аналитические обзоры

 

Мартынова М.В. доктор географических наук, ведущий научный сотрудник, ФГБУН Институт водных проблем Российской академии наук

Аннотация:
Впервые сделано обобщение публикаций, относящихся к процессам, обусловливающим сопряженность Fe и Mn с циклом азота в донных отложениях. Рассмотрены реакции, осуществляемые биотически или абиотически в анаэробных условиях. В ряде случаев дана количественная оценка значимости этих реакций в отложениях конкретных водоемов.

Ключевые слова: азот, анаэробные процессы, донные отложения, железо, марганец, сопряженность

Ссылка для цитирования:
Мартынова М.В. Сопряженность преобразований Fe и Mn с циклом азота в морских и пресноводных отложениях // Вода: химия и экология. — 2015. — № 4. — c. 30-36. — http://watchemec.ru/article/27267/

Литература:
1.​ Умаров М.М., Кураков А.В., Степанов А.Л. Микробиологическая трансформация азота в почве. М.: ГЕОС, 2007. 138 с.

2.​ Kern J., Darwich A., Furch K. The contribution of gaseous nitrogen flux in the nitrogen budget on the Amazon floodplain at Lago Camaleao // Verh. Internat. Verein. Limnol. 1998. V. 26. P. 926−928.

3.​ Lewis W.M. Causes for a high frequency of nitrogen limitation in tropical lakes // Verh. Internat. Verein. Limnol. 2002. V. 28. P. 210−213.

4.​ Гогина Е.С. Удаление биогенных элементов из сточных вод. Монография. М.: МГСУ, 2010. 120 с.

5.​ Krezović M., Jakovlević M., Blagojević S., Maksimović S. Specific transformations of mineral forms of nitrogen in acid soils // J. Serb. Chem. Soc. 2009. V. 74. No. 1. P. 93−102.

6.​ Кузнецов С.И. Микрофлора озер и ее геохимическая деятельность. Л.: Изд-во «Наука», Ленингр. отд., , 1970. 440 с.

7.​ Seitzinger S.P. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance // Limnol. Oceanogr. 1988. V. 33. P. 702−724.

8.​ Trimmer M., Nedwell D.B., Sivyer D.B., Malcolm S.J. Nitrogen fluxes through the lower estuary of the river Great Ouse, England: the role of the bottom sediments // Mar. Ecol. Prog. Ser. 1998. V. 163. No. 12. P. 109−124.

9.​ Brezonik P.L., Lee G.F. Denitrification as a nitrogen sink in lake Mendota, Wisconsin // Environ. Sci. Technol. 1968. V. 2. P. 120−125.

10.​ Abe D.S., Rocha O., Matsumura-Tundisi T., Tundisi J.G. Nitrification and denirtrification in a series of reservoirs in the Tietê river, south-eastern Brazil // Verh. Internat. Verein. Limnol. 2002. V. 28. P. 877−880.

11.​ Sheibley R.W., Duff J.H., Jackman A.P., Triska F.J. Inorganic nitrogen transformations in the bed of the Shingobee river, Minnesota: Integrating hydrologic and biological processes using sediment perfusion cores // Limnol. Oceanogr. 2003. V. 48. No. 3. P. 1129−1140.

12.​ Mulder A., Van de Graaf A.A., Robertson L.A., Kuenen J.G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor // FEMS Microbiol. Ecol. 1995. V. 16. No. 3. P. 177−184.

13.​ Schultz H.D., Dahmke A., Schinzel T., Walemann K., Zabel M. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic // Geochim. Cosmochim. Acta. 1994. V. 58. P. 2041−2060.

14.​ Hulth S., Aller R.C., Gilbert F. Coupled anoxic nitrification/manganese reduction in marine sediments // Geochim. Cosmochim. Acta. 1999. V. 63. P. 49−66.

15.​ Jetten M.S., Strous M., van de Pas-Schoonen K.T., Schalk J, van Dongen UG., van de Graaf A.A., Logemann S., Muyser G., van Loosdreckt M.C., Kuenen J.G. The anaerobic oxidation of ammonium // FEMS Microbiol. Rev. 1998. V. 25. No.5. P. 421−437.

16.​ Waki M, Yasuda T., Yokoyama H, Hanajima D.,Ogino A., Suzuki K., Yamagishi T., Suwa Y., Tanaka Y. Nitrogen removal by co-occurring methane oxidation, denitrification, aerobic ammonium oxidation, and anammox // Appl. Microbiol. Biotech. 2009. V. 84. No. 5. P. 977−985.

17.​ Seitzinger S.P., Gibblin A.E. Estimating denitrification in North Atlantic continental shelf sediments // Biogeochem. 1996. V. 35. P. 235− 260.

18.​ Thamdrup B., Dalsgaard S. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments // Appl. Environ. Microbiol. 2002. V. 68. No. 3. P. 1312−1318.

19.​ Kuypers MMM., Sliekers AO, Labik G., Schmid M. and 5 others. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea // Nature 2003. V. 422. P. 608−611.

20.​ Murray J.W., Fuchsman C., Kirkpatrick J., Paul B., Konovalov S.K. Species and δ15N signatures of nitrogen transformations in the suboxic zone of the Black Sea // Oceanography 2005. V. 18. No. 2. P. 36−45.

21.​ Engstrӧm P., Dalsgaard T., Hulth S., Aller R.C. Anaerobic ammonium oxidation by nitrite (anammox): implications for N2 production in coastal marine sediments // Geochim. Cosmochim. Acta, 2005. V. 69. P. 2057−2065.

22.​ Thamdrup Bo, Dalsgaard T. The fate of ammonium in anoxic manganese oxide-rich marine sediment // Geochim. Cosmochim. Acta 2000. V. 64. P. 4157−4164.

23.​ Clément J. Ch., Shrestha J., Ehrenfeld J.G., Jaffé P.R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils // Soil Biol. Biochem. 2005. V. 37. P. 2323−2328.

24.​ Zumft W.G. Cell biology and molecular basis of denitrification // Microbiol. Mol. Biol. Rev. 1997. V. 61. No. 4. P. 533−613.

25.​ Vossenberg J. van de, Woebkern D., Maalcke W.J., Wessels H.J.C.T., Dutilh B.E. and 20 others. The metagenome of the marine anammox bacterium ”Candidatus Scalindua profunda” illustrates the versatility of this globally important nitrogen cycle bacterium // Environ. Microbiol. 2013. V. 15. Is. 5. P. 1275−1289.

26.​ Haynes J.R., Sherlock R.R. Gaseous losses of nitrogen // Minerals in the plant-soil system. (Ed. Haynes J.R. with contributions by K.K. Cameron, K.M. Goh and R.R. Sherlock)

27.​ Blagodatsky S., Grote R., Kiese R., Werner C., Butterbach-Bahl K. Modeling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission // Plant and Soil. 2011. V. 346. P. 237−250.

28.​ Yang W.H., Weber K.A., Silver W.R. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction // Nature Geosciences. 2012. V. 5. P. 538−541.

29.​ Hulth S., Aller R.C., Canfield D.E., Dalsgaard T., Engstrӧm P., Gilbert F., Sundbäk K., Thamdrup B. Nitrogen removal in marine sediments: recent findings and future research challenges //Marine Chem. 2005. V. 94 Is. 1−4. P. 125−145.

30.​ Thamdrup B., Dalsgaard T. Quantification of ammonium oxidation to dinitroghen coupled to manganese oxide reduction in marine sediment// J. Conference Abstracts. 2000. V. 5. No. 2. P. 995.

31.​ Hyacinthne Ch., Anschutz P., Carbonel P., Jouanneau J.-M., Jorissen F. Interactions of iron, manganese and nitrogen in muddy sediments of the bay of Biscay // Journal of conference abstracts. Cambridge publication. 2000. V. 5. No. 2. P. 538.

32.​ Luther III G.W., Sundby B., Lewis B.L., Brendel P.J., Silverberg N. Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen // Geochim. Cosmochim. Acta. 1997. V. 81. P. 4043−4052.

33.​ Kemp W.M., Sampou P., Caffrey J., Mayer M., Henriksen K., Boyonton W.R. Ammonium recycling versus denitrification in Chesapeake Bay sediments // Limnol. Oceanogr. 1990. V. 335. No. 7. P. 1545−1563.

34.​ Canfield D.E., Thamdrup B., Hansen J.W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction // Geochim. Cosmochim. Acta. 1993. V. 57. P. 3867−3883.

35.​ Anschutz P., Dedieu K., Desmazes F., Chiallou G. Speciation, oxidation state, and reactivity of particulate manganese in marine sediments // Chemical Geology 2005. V. 218. P. 265−279.

36.​ Postma D. G. Kinetic of nitrate reduction by detrite Fe(II)-silicates // Geochim. Cosmochim. Acta. 1990. V. 54. P. 900−908.

37.​ Weber K.A., Pollock J., Cole K.A., O’Konnor S.M., Achenbach L.A., Coates J.D. Anaerobic nitrate-dependent iron (II) bio-oxidation by a novel lithoautotrophic Betaproteobacterium Strain 2002. // Appl. Environ. Microbiol. 2006. V. 72. No. 1. P. 686−694

38.​ Weber K.A., Urrutia M.M., Churchill P.F., Kukkadapu R.K., Roden E.E. Anaerobic redox cycling of iron by freshwater sediment microorganisms // Environ. Microbiol. 2006. V. 8. No.1. P. 100−113.

39.​ Postma D.G., Boensen C., Kristensen H., Larsen F. Nitrate reduction in an unconfined: water chemistry, reduction processes and geochemical modeling // Water Resour. Res. 1991. V. 27. P. 2027−2045.

40.​ Davidson D.W., Cooc S.C., Snelling R.R. Explaining the abundance of ants in lowland tropical rainforest canopies // Science. 2003. V. 300. No. 562. P. 969−972.

41.​ Pyzola S. Nitrate reduction coupled to iron (II) and manganese (II) oxidation are in an agricultural soil // Theses and Dissertations – Plant and Soils Sciences. 2013. Paper 20.

42.​ Straub K.L., Benz M., Schink B., Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron // Appl. Environ. Microbiol. 1996. V.62. No. 4. P. 1458−1460.

43.​ Chandhuri S.K., Lack J.G., Coates J.D. Biogenic magnetite formation through anaerobic biooxidation of Fe(II) // Appl. Environ. Microbiol. 2001. V. 67. No. 6. P. 2844−2848.

44.​ Hoffmann C.Ch. Nitrate removal in regularly flooded riparian meadow // Verh. Internat. Verein. Limnol. 1998. V. 26. P. 1352−1358.

45.​ Kӧlle W.P., Werner O.S., Bottcher J. Denitrification in einem reduzierenden Grundwasserleiter // Vom Wasser. 1983. Bd. 61. S. 125−160.

46.​ Горленко В.М., Дубинина Г.А., Кузнецов С.И. Экология водных микроорганизмов. М.: Наука, 1977. 289 с.

47.​ Mortimer R. J. G., Harris S. J., Krom M.D., Freitag T.E., and 5 others. Anoxic nitrification in marine sediments // Mar. Ecol. Prog. Ser. 2004. V. 276. P. 37−51.

48.​ Lovley D.R. Dissimilatory Fe(III) and Mn(IV) reduction // Microbiol. Rev. 1991. V. 55. No. 2. P. 259−287.